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1. INTRODUCTION

The purpose of this paper is to study the properties of efficient equitable
paths in an infinite-horizon continuous-time framework with heterogenous
capital goods (which can include non-renewable resource stocks). It is
shown that competitive paths which are efficient satisfy a ‘‘terminal cost
minimization’’ condition in the sense of Malinvaud [18]. This is used to
establish the principal result of the paper: competitive paths, which are
both equitable and efficient, must satisfy the condition that the value of net
investment must be equal to zero at each date.
We now relate these results to those available in the literature. This area
of study originates with a paper by Solow [19], who analyzed a capital
accumulation model, with Cobb–Douglas technology, in the presence of an
exhaustible resource. He was interested in the possibility of sustainable



consumption levels in this context and concentrated attention on growth
paths which maximized the welfare of the least well off generation among
all growth paths feasible from given initial resources.2 Such ‘‘maximin’’

2 That is, the objective function in his exercise was of the Rawlsian Maximin type.

paths are efficient as well as equitable, where equity in this context means
that the path maintains a constant consumption level at all dates.
Subsequently, Hartwick [14] made the interesting observation that a
competitive equilibrium path, which follows the simple rule of thumb of
investing the rents from the exhaustible resource used at each date,3 in the

3 This is often referred to, in the literature, as Hartwick’s (investment) rule.

net accumulation of the produced capital good, is equitable. As Solow
[20, 21] has observed, this is an intuitively appealing investment rule of
maintaining the consumption potential of society, in a generalized sense,
by replacing exhaustible resource stocks, which are used up, with produced
capital goods of equal value.
It turns out that Hartwick’s observation has significance in a wider class
of models than the special context in which it arose initially. In particular,
Dixit et al. [12] recognized that Hartwick’s investment rule is really a
statement that the valuation of net investment (including the disinvestment
in the exhaustible resource) is zero at each date.4 They showed in a general

4 In subsequent discussions, it is this more general formulation of the investment rule that
will be referred to as Hartwick’s rule (HR).

model of accumulation involving heterogenous capital goods (which could
include various non-renewable resource stocks) that if the valuation of net
investment along a competitive path is constant over time5 (the constant

5 This investment rule will be referred to subsequently as the Dixit–Hammond–Hoel rule
(DHHR).

is not required to be zero) then this would ensure intertemporal equity
(in the sense described above, but with ‘‘consumption’’ interpreted now
as the utility based on a vector of consumption goods). Furthermore, this
investment rule was shown to be a necessary condition for intertemporal
equity along competitive paths.
This is a complete characterization of competitive equitable paths, and it
naturally leads one to re-examine the significance of Hartwick’s investment
rule. This is prompted by the fact that in Solow’s original exercise in the
context of the exhaustible resource model, the maximin equitable paths do
in fact satisfy Hartwick’s rule, not just the Dixit–Hammond–Hoel rule.
This observation leads to the conjecture that for competitive paths which
are both equitable and efficient, Hartwick’s rule should hold. In the
exhaustible resource model (but without the special structure of the
Cobb–Douglas technology of Solow [19]), a result like this was first noted
by Dasgupta and Mitra [8]. However, their treatment of equity and effi-
ciency was in the context of a discrete-time model, where Hartwick’s rule
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does not hold in the original form but rather in a modified form. There has
been quite a bit of interest in this issue more recently. In the continuous
time framework of this exhaustible resource model, Hartwick’s rule does
hold in its original form as a necessary condition along efficient equitable
paths (see Withagen and Asheim [24] for references to some of the litera-
ture that has emerged).
Given these results in the exhaustible resource model, Withagen and
Asheim [24] posed the following general problem: ‘‘A question that
naturally arises is whether the converse of Hartwick’s rule holds in general
in an economy with stationary instantaneous preferences and a stationary
technology: Does an efficient constant utility path imply that the value of
net investments equals zero at each point in time?’’6 They answered the

6Dixit et al. [12] attempted to answer this question, but they were only able to establish
this under a ‘‘capital deepening’’ condition used by Burmeister and Turnovsky [2], which is
not easy to interpret.

question in the affirmative for efficient constant utility paths that are
supported by positive utility discount factors having the property that the
integral of the discount factors exists; that is, for paths which are regular
maximin in the sense of Burmeister and Hammond [1]. The difficulty is
that with this restriction they cannot accomodate into their theory paths of
the golden-rule variety, in neoclassical models of the Cass–Koopmans type,
in which exhaustible resources are not essential factors in production.
In order to answer the question stated above, without any further
restrictions in its scope, one needs a suitable necessary condition for effi-
ciency in a continuous-time framework.7 The necessary condition of effi-

7Unfortunately, the study of efficient allocation of resources has been confined, almost
exclusively, to the discrete-time framework. The important characterizations of efficiency, due
to Malinvaud [18] and Cass [4], are established in discrete-time models. While there are
some characterizations of efficiency in the continuous-time framework (see, for example,
Majumdar [17], for some of the important theorems), general results exclude the settings
which allow for golden-rule type programs.

ciency that is most useful in the present context is the ‘‘terminal cost
minimization’’ condition of Malinvaud [18], because it provides precisely
the information required to show the necessity of Hartwick’s rule for effi-
cient equitable paths. In fact, Hartwick’s rule is seen to be the necessary
first-order condition of terminal cost minimization along competitive
equitable paths.
The paper is organized as follows. In Section 2, we present a general
model of intertemporal allocation in the continuous time framework, along
the lines of Cass and Shell [5]. In Section 3, we discuss Hartwick’s rule
and its generalization by Dixit et al. [12]. We then discuss these rules in
the context of the standard one-sector neoclassical model and provide an
example where a competitive path which is equitable does not satisfy
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Hartwick’s rule. In Section 4, we present the main results of the paper:
(i) competitive paths which are efficient are shown to satisfy the ‘‘terminal
cost minimization condition,’’ and (ii) competitive paths which are equit-
able and efficient are shown to satisfy Hartwick’s rule.
Given our results, Hartwick’s rule takes on a significance that is quite
distinct from the intertemporal equity issue. In fact, its role is seen to be
to help signal inefficient equitable paths. Any competitive equitable path
would satisfy the Dixit–Hammond–Hoel rule; but, if the (constant) value
of net investment were non-zero (that is, if Hartwick’s rule were violated),
it would be necesarily inefficient.

2. PRELIMINARIES

2.1. The Framework

Consider a framework in which population and technology are
unchanging, individuals at each date are identical in all respects (so one can
think in terms of a single representative person at each date and ignore
distribution considerations).
Denote by ki \ 0, the stock of the ith capital good, where i=1, ..., n,
and by zi the investment flow, net of depreciation, of the ith capital good.
Denote the vectors (k1, ..., kn) and (z1, ..., zn) by k and z respectively. The
technology set, denoted by L, is a set of pairs (z, k) in Rn×Rn+. By a typical
point (z, k) of L we understand that from capital input stock k it is tech-
nologically feasible to obtain the flow of net investment z. The (instanta-
neous) welfare function is denoted by a function u: LQ R. We shall make
the following assumptions8 on L and u.

8 For x, y in Rn, x \ y means xi \ yi for i=1, ..., n; x > y means x \ y and x ] y; x >> y
means xi > yi for i=1, ..., n. For x in Rn, the sum norm of x, denoted by ||x|| is defined by
||x||=; n

i=1 |xi |.

(A.1) L is closed and convex; for each k \ 0, there is a z in Rn, such
that (z, k) ¥ L.
(A.2) Given any number z > 0 there is a number g > 0 such that

(z, k) ¥ L and |k| [ z implies |u(z, k)| [ g and |z| [ g.
(A.3) u is continuous on L and twice continuously differentiable in

the interior of L.
(A.4) u(z, k) \ 0 for (z, k) ¥ L; u(z, k) \ u(z −, k) if (z, k) and

(z −, k) ¥ L and z [ z −.
(A.5) u is a concave function on L; for each k ¥ Rn++, u(z, k) is a

strictly concave function of z; that is, if (z −, k) and (z, k) are in L satisfying
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z − ] z and l is a number satisfying 0 < l < 1, then u(lz+(1−l) z −, k) >
lu(z, k)+(1−l) u(z −, k); in the interior of L, the matrix of second partials
of u with respect to z, [“2u(z, k)/“z2], is negative definite.

For each k \ 0, defining the set L(k) by: L(k) — {z: (z, k) ¥ L}, we note
that L(k) is a non-empty, compact, and convex subset of Rn.
A path from initial stock K in Rn+ is a pair of functions (z( · ), k( · )),
where z( · ): [0,.)Q Rn and k( · ): [0,.)Q Rn+, such that k( · ) is abso-
lutely continuous and9

9We are using conventional notation: ẋ means the time derivative of x. So if x(t)=
(x1(t), ..., xn(t)), then ẋ(t)=[dx1/dt, ..., dxn/dt]. If x is a vector (x1, ..., xn) and f(x) is a
vector valued function defined from Rn to Rm, that is, f(x)=((f1(x), ..., fm(x)), then f −(x) is
the m×n matrix whose ijth element is (“fi(x)/“xj). If f: RnQ R, then fi is the ith partial
derivative of f and fij is the jth partial derivative of fi, for i=1, ..., n, j=1, ..., n. The nota-
tion ‘‘a.e’’ stands for ‘‘almost everywhere’’; more precisely, if A is a subset of R, then by the
expression ‘‘for t ¥ A, a.e.’’ we mean ‘‘for t ¥ B, where B is a subset of A such that the
complement of B in A is a set of Lebesgue measure zero’’; if the set A is an interval [a,.) we
often use the expression ‘‘for t \ a, a.e.’’ in place of ‘‘for t ¥ [a,.), a.e.’’

(z(t), k(t)) ¥ L for t \ 0, a.e.;

k̇(t)=z(t) for t \ 0, a.e.; and k(0)=K.
(2.1)

Denote by I(K) the set of paths from initial stock K. We shall assume

(A.6) For each K in Rn+, I(K) is non-empty.

A path (z(t), k(t)) from K is called equitable if u(z(t), k(t)) is constant
over time. It is called inefficient if there is another path (z −(t), k −(t))
from K, such that u(z −(t), k −(t)) \ u(z(t), k(t)) for t \ 0, a.e., and denoting
Lebesgue measure on the reals by m,

m{t: u(z −(t), k −(t)) > u(z(t), k(t))} > 0. (2.2)

It is called efficient if it is not inefficient.

2.2. Examples

In this section we shall provide two examples of the framework described
earlier. The examples will play a role in subsequent sections. They have not
been chosen for their generality; various multisector models which may be
accomodated in the framework described earlier may be found in the
examples discussed in Magill [16].

Example 1. This is the well known one sector neoclassical growth
model of the Cass–Koopmans type (see Cass [3], Koopmans [15]).
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There is one good which is both the capital good and the consumption
good. Labor is assumed to be constant over time. Let G: R+Q R+ denote
the gross production function; a number d, satisfying 0 < d <., denotes
the constant exponential rate of depreciation of the capital stock; and
w: R+Q R+ denotes a cardinal welfare function. The functions G and w are
assumed to satisfy the following properties:

(N.1) G(0)=0; G is continuous on R+; G is twice continuously dif-
ferentiable on R++; for k > 0, G −(k) > 0 and G'(k) [ 0; there is k − > 0 such
that for k ¥ (0, k −], G −(k) > d; there is k' > 0 such that for k ¥ [k',.),
G −(k) < d.
(N.2) w(0)=0; w is continuous and concave on R+; w is twice con-

tinuously differentiable on R++; w −(C) > 0 and w'(C) < 0 for all C > 0;
w −(C)Q. as CQ 0.

The technology set here is L={(z, k): k \ 0; G(k)−dk \ z \ −dk};
u: LQ R+ is given by the formula: u(z, k)=w(G(k)−dk−z), for (z, k) ¥ L.
It may be verified that Example 1 satisfies (A.1) to (A.6). Details may be
found in Dasgupta and Mitra [9].

Example 2. This is a standard model employed in the literature on
optimal allocation of resources over time in the presence of an exhaustible
resource (see for example Dasgupta and Heal [6, 7], Solow [19]).

In this model, there is one produced good, which serves as both the
capital and the consumption good, and there is an exhaustible resource.
Labor is assumed to be constant over time. Denote by k1 the stock of
augmentable capital good and by k2 the stock of the exhaustible resource.
A number d, satisfying 0 [ d <., denotes the constant exponential depre-
ciation rate of augmentable capital. Let G: R2+Q R+ denote the gross pro-
duction function for the capital cum consumption good, using the capital
input stock k1 and the flow of exhaustible resource used (−z2). It is
assumed that the flow of resource use cannot exceed a maximum level
denoted by R > 0. The output G(k1, −z2) can be used to replace worn out
capital (if any), dk1, to augment the capital stock through net investment,
z1, or to provide consumption, C, which generates utility according to a
(welfare) function w: R+Q R+.
The following assumptions are made on G and w:

(R.1)

(i) G(0, 0)=G(0, y)=G(x, 0)=0 for x \ 0 and y \ 0.
(ii) G is continuous, concave and nondecreasing on R2+, and twice

continuously differentiable on R2++; further, G1(x, y) > 0, G2(x, y) > 0, and
G11(x, y) < 0, G22(x, y) < 0 for (x, y) >> 0.
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(R.2) w(0)=0, w is continuous and concave on R+; w is twice con-
tinuously differentiable on R++; w −(C) > 0 and w'(C) < 0 for C > 0;
w −(C)Q. as CQ 0.

The technology set here is L={(z1, z2, k1, k2): (k1, k2) \ 0; −R [ z2 [ 0;
G(k1, −z2)−dk1 \ z1 \ −dk1} and the formula for u: LQ R+ is: u(z1, z2,
k1, k2)=w(G(k1, −z2)−dk1−z1) for (z1, z2, k1, k2) ¥ L. It may also be
verified that Example 2 satisfies (A.1) to (A.6). Details may be found in
Dasgupta and Mitra [9].

2.3. Competitive Paths

We shall now elaborate what we mean by a time path of quantities and
prices which evolve along an equilibrium of a competitive market economy,
from an initial stock K. It would be convenient, for what follows, to
introduce the following notation and concepts. Let p=(p1, ..., pn) denote
prices of the investment goods and q denote a positive weight on the utility.
Define a function H: Rn+×R

n×R++Q R by

H(k, p, q)=Maximize [qu(z, k)+pz]

subject to (z, k) ¥ L
ˇ (H)

For each k in Rn+, L(k) is non-empty and compact and so H(k, p, q) is
well defined. Further, H is convex in p and q, and since L is convex, H is
concave in k.
By (A.5), for k ¥ Rn++, u(z, k) is strictly concave in z and, therefore, there
is a unique maximizing choice of investment, which solves (H). We can
write this maximizing choice of z in (H) as a function g(k, p, q); that is,
g: Rn+×R

n×R++Q Rn is such that (g(k, p, q), k) ¥ L, and

H(k, p, q)=qu(g(k, p, q), k)+pg(k, p, q).

Let (k0, p0, q0) satisfy k0 ¥ Rn++, and (g(k
0, p0, q0), k0) ¥ int L. Then, by

the definition of g, the first-order condition of problem (H) yields

p0+q0 “u(g(k0, p0, q0), k0)/“z=0.

By (A.3), the function f(k, p, q, z) — p+q[“u(z, k)/“z] is defined in an
open neighborhood around (k0, p0, q0, g(k0, p0, q0)), it is continuously
differentiable, and its derivative matrix with respect to z, evaluated at
(k0, p0, q0, g(k0, p0, q0)), is non-singular. Thus, by the implicit function
theorem, g(k, p, q) is continuously differentiable with respect to (k, p, q)
in an open neighborhood N of (k0, p0, q0) and the range of (g(k, p, q), k),
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for (k, p, q) in N, is in an open subset of L. It follows that in this neigh-
borhood N of (k0, p0, q0), H is continuously differentiable and, by the
envelope theorem,

“H(k, p, q)/“p=g(k, p, q); “H(k, p, q)/“q=u(g(k, p, q), k) (2.3)

“H(k, p, q)/“k=“u(g(k, p, q), k)/“k. (2.4)

A competitive path is a path (z(t), k(t)) with associated prices, denoted
by absolutely continuous functions of time q(t) and (p1(t), ..., pn(t)) —
(p(t)), with q(t) > 0 and p(t) \ 0 for t \ 0, a.e., satisfying the following
two conditions:

q(t) u(z(t), k(t))+p(t) z(t)=H(k(t), p(t), q(t)) for t \ 0, a.e.
(2.5)

ṗ(t)=−“H(k(t), p(t), q(t))/“k for t \ 0, a.e.
(2.6)

Here, p(t) is the vector of present value prices of the investment goods,
prevailing along a competitive path, at date t. Use the notation (z(t), k(t),
p(t), q(t)) to denote a competitive path with its associated prices. Along a
competitive path, for each t \ 0, we denote H(k(t), p(t), q(t)) by y(t); that
is,

y(t) —H(k(t), p(t), q(t)) for t \ 0. (2.7)

Interpreting utility as an output with present value price q(t), (2.5) says
that the maximum value of output achievable from capital stocks k(t) at
the prices p(t), q(t) [that is, H(k(t), p(t), q(t))] is realized along a compe-
titive path:

y(t)=q(t) u(z(t), k(t))+p(t) z(t) for t \ 0, a.e. (2.8)

Equation (2.6) says that asset markets are in equilibrium; that is, no gains
can be made by pure arbitrage (see Dorfman et al. [13], Weitzman [23],
for expositions of this no-arbitrage principle).
If (z( · ), k( · )) is a path from K in Rn+, we shall say that it is interior if
(i) (z(t), k(t)) is in the interior of L in Rn×Rn for t \ 0, a.e., and (ii)
k(t) ¥ Rn++ for t \ 0. We now note a preliminary result for interior compe-
titive paths, which will be used in the next section.

Lemma 1. If (z(t), k(t), p(t), q(t)) is an interior competitive path from K
in Rn++, then
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(i) the function y(t), defined in (2.7), is an absolutely continuous
function of t; and
(ii) ẏ(t)=q̇(t) u(z(t), k(t)) for t \ 0, a.e.

Proof. (i)10 Let 0 [ a < b <. be given. For t ¥ [a, b], we have

10 This proof is a slight modification of the proof used in Dasgupta and Mitra [10, p. 433].

y(t)=H(k(t), p(t), q(t)). Now (k(t), p(t), q(t)) are continuous on [a, b],
so we can find 0 [ m [M<. such that for all t ¥ [a, b], m [ ki(t) [M
for i=1, ..., n, 0 [ pi(t) [M for i=1, ..., n, and m [ q(t) [M. Since the
competitive path is interior, we may choose m > 0. Thus, E — [me, Me] is
a compact subset in the interior of Rn+, where e=(1, ..., 1) in R

n.
Let t1, t2 be arbitrary points in [a, b]. Then y(t2)−y(t1)=H(k(t2),
p(t2), q(t2))−H(k(t1), p(t1), q(t1))=H(k(t2), p(t2), q(t2))−H(k(t1), p(t2),
q(t2))+H(k(t1), p(t2), q(t2))−H(k(t1), p(t1), q(t1)). Thus, we have

|y(t2)−y(t1)| [ |H(k(t2), p(t2), q(t2))−H(k(t1), p(t2), q(t2))|

+|H(k(t1), p(t2), q(t2))−H(k(t1), p(t1), q(t1))|. (2.9)

The function h(k)=H(k, p(t2), q(t2)) is a concave function on Rn+ and,
therefore, is Lipschitz on the compact subset E in the interior of Rn+, with
Lipschitz constant L1 > 0. Thus, we have

|H(k(t2), p(t2), q(t2))−H(k(t1), p(t2), q(t2))| [ L1 |k(t2)−k(t1)|. (2.10)

The function g(p, q)=H(k(t1), p, q) is a convex function on Rn×R++,
and therefore, is Lipschitz on the compact set [0, Me]×[m, M] in the
interior of Rn×R++, with Lipschitz constant L2 > 0. Thus, we have

|H(k(t1), p(t2), q(t2))−H(k(t1), p(t1), q(t1))|

[ L2 |(p(t2), q(t2))−(p(t1), q(t1))|. (2.11)

Given any e > 0, there exists d > 0 such that if a1, b1, ..., ar, br are
numbers satisfying a [ a1 < b1 [ a2 < b2 [ · · ·[ ar < br [ b and ;r

j=1 (bj−aj)
< d, then for all i=1, ..., n, ; r

j=1 |ki(bj)−ki(aj)| < (e/3nL1), and for all
i=1, ..., n, ; r

j=1 |pi(bj)−pi(aj)| < (e/3nL2), and |q(bj)−q(aj)| < (e/3L2),
since k, p and q are absolutely continuous on [a, b]. Thus, using (2.9),
(2.10), and (2.11), we have

C
r

j=1
|y(bj)−y(aj)| [ L1(e/3L1)+L2(e/3L2)+L2(e/3L2)=e,

which means that y(t) is absolutely continuous on [a, b].
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(ii) Since g(k, p, q) solves the problem (H) for k ¥ Rn++, we can use
condition (2.5) for a competitive path to obtain

g(k(t), p(t), q(t))=z(t) for t \ 0, a.e. (2.12)

Since the path is interior, (g(k(t), p(t), q(t)), k(t)) is in the interior of L. By
(i) above, y(t) is absolutely continuous, and so for t \ 0 a.e., y(t) is differ-
entiable. Also, k(t), p(t) and q(t) are differentiable, and H(k, p, q) is con-
tinuously differentiable at (k(t), p(t), q(t)). Thus, by differentiating (2.7),
and using (2.3), we get

ẏ(t)=[“H(k(t), p(t), q(t))/“k] k̇(t)+[“H(k(t), p(t), q(t))/“p] ṗ(t)

+[“H(k(t), p(t), q(t))/“q] q̇(t)

=[“H(k(t), p(t), q(t))/“k] k̇(t)+g(k(t), p(t), q(t)) ṗ(t)

+q̇(t) u(z(t), k(t)) for t \ 0, a.e.

Thus, we obtain

ẏ(t)=[“H(k(t), p(t), q(t))/“k] k̇(t)+k̇(t) ṗ(t)+q̇(t) u(z(t), k(t))

for t \ 0, a.e. (2.13)

Combining condition (2.6) for a competitive path with (2.13), we have

ẏ(t)=q̇(t) u(z(t), k(t)) for t \ 0, a.e. (2.14)

which establishes (ii). L

Remark 1. If (q(t)) is an absolutely continuous function, with q(t) > 0
for t \ 0, and (z(t), k(t)) is a path from K, which is optimal in the sense
that

. > F
.

0
q(t) u(z(t), k(t)) dt \ F

.

0
q(t) u(z −(t), k −(t)) dt

for all paths (z −(t), k −(t)) from K, then one can use the Main Theorem of
Takekuma [22, p. 431] to obtain an absolutely continuous function (p(t)),
with p(t) ¥ Rn+ for t \ 0, such that (z(t), k(t), p(t), q(t)) is a competitive
path from K; that is, (z(t), k(t), p(t), q(t)) satisfies (2.5) and (2.6). (In fact,
Takekuma’s result can be applied to get this result in the more general case,
where (z(t), k(t)) is a path from K, which is optimal in the sense that it is
not overtaken by any path (z −(t), k −(t)) from K.) Interpreting q(t) as the
variable discount factor applied to the utility obtained at time t, we see that
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our analysis of the behavior of competitive paths includes the behavior of
the optimal paths considered by Withagen and Asheim [24].

3. A CHARACTERIZATION OF EQUITABLE PATHS

3.1. Competitive Paths in the Exhaustible Resource Model

In the context of the exhaustible resource model, described in Example 2
of Section 2, the competitive conditions (2.5) and (2.6) amount to two
familiar rules: (i) Hotelling’s Rule on the allocation of an exhaustible
resource over time, and (ii) Ramsey’s Rule on the allocation of consump-
tion over time.
We can see this as follows. An interior competitive path (z(t), k(t), p(t),
q(t)) satisfies

H(k(t), p(t), q(t))

=Maximize q(t) w[G(k1(t), r)−dk1(t)−z1]+p1(t) z1+p2(t)(−r)

subject to (z1, −r, k1(t), k2(t)) ¥ L,

where we have written r (the exhaustible resource use) for (−z2).
Using the first-order conditions for an interior maximum, we get

q(t) w −(c(t))(−1)+p1(t)=0 for t \ 0, a.e. (3.1)

q(t) w −(c(t))[G2(k1(t), r(t))]−p2(t)=0 for t \ 0, a.e. (3.2)

Also, by the envelope theorem, we have

“H(k(t), p(t), q(t))/“k1

=q(t) w −(c(t))[G1(k1(t), r(t))−d] for t \ 0, a.e. (3.3)

“H(k(t), p(t), q(t))/“k2=0 for t \ 0, a.e. (3.4)

Thus, using condition (2.6) of a competitive path, we have

ṗ1(t)=−q(t) w −(c(t))[G1(k1(t), r(t))−d] for t \ 0, a.e. (3.5)

ṗ2(t)=0 for t \ 0 a.e. (3.6)

We can use (3.1) and (3.5) to study the price path of the augmentable
capital good:

[ṗ1(t)/p1(t)]=[G1(k1(t), r(t))−d] for t \ 0, a.e. (3.7)
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The price of the exhaustible resource is related to that of the augmentable
good through (3.1) and (3.2):

p2(t)=p1(t) G2(k1(t), r(t)) for t \ 0, a.e. (3.8)

Differentiating (3.8) with respect to t, and using (3.6), we get

0=ṗ2(t)=ṗ1(t) G2(k1(t), r(t))+Ġ2(k1(t), r(t)) p1(t).

This can be used with (3.7) to get

[Ġ2(k1(t), r(t))/G2(k1(t), r(t))]

=−[ṗ1(t)/p1(t)]=[G1(k1(t), r(t))−d] for t \ 0, a.e., (3.9)

which indicates that the rates of return on the two capital goods (the
augmentable and the non-renewable one) are equalized. This is known as
Hotelling’s rule.
The version of Ramsey’s rule that emerges in this context can be derived
by differentiating (3.1)

ṗ1(t)=q̇(t) w −(c(t))+q(t) ẇ −(c(t)) (3.10)

and then combining (3.1), (3.7), and (3.10) to yield

−[ẇ −(c(t))/w −(c(t))]=[q̇(t)/q(t)]+[G1(k1(t), r(t))−d]. (3.11)

(If the utility weights, q(t), happen to be exponential, (3.11) yields the
standard Ramsey–Euler equation of optimal growth theory with exponen-
tial discounting.)
Given concavity of the production and welfare functions, the Hotelling
Rule (3.9) and the Ramsey Rule (3.11) in fact characterize competitive
paths in this framework.

3.2. Hartwick’s Result in the Exhaustible Resource Model

Hartwick [14] made the observation that if along a competitive path
one invests resource rents in the accumulation of the (augmentable) capital
good, that is,

k̇1(t)=z1(t)=r(t) G2(k1(t), r(t)) for t \ 0, a.e., (3.12)

then the path is equitable:

c(t) [and hence w(c(t))] is constant over time. (3.13)

We refer to (3.12) as Hartwick’s (investment) rule.
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Hartwick’s observation may be seen as follows. Using the feasibility
condition

c(t)=G(k1(t), r(t))−dk1(t)−z1(t)

and Hartwick’s rule (3.12), we get

c(t)=G(k1(t), r(t))−dk1(t)−r(t) G2(k1(t), r(t)) for t \ 0, a.e.
(3.14)

Differentiating (3.14), one obtains

ċ(t)=G1(k1(t), r(t)) k̇1(t)+G2(k1(t), r(t)) ṙ(t)−dk̇1(t)

−r(t) Ġ2(k1(t), r(t))− ṙ(t) G2(k1(t), r(t))

=[G1(k1(t), r(t))−d] k̇1(t)−r(t) Ġ2(k1(t), r(t))

=[G1(k1(t), r(t))−d] k̇1(t)

−[Ġ2(k1(t), r(t))/G2(k1(t), r(t))] r(t) G2(k1(t), r(t)).

Using Hartwick’s rule (3.12) again, we get

ċ(t)={[G1(k1(t), r(t))−d]−[Ġ2(k1(t), r(t))/G2(k1(t), r(t))]} k̇1(t),

which yields ċ(t)=0 by using Hotelling’s Rule (3.9). This establishes (3.13),
that is, intertemporal equity.

3.3. Dixit, Hammond, and Hoel’s Result

Dixit et al. [12] observed that Hartwick’s rule could be restated as the
condition that the total value of investment in all capital goods is zero:

p(t) k̇(t)=0. (3.15)

In the context of the exhaustible resource model, we have, by using (3.8),

p(t) k̇(t)=p1(t) k̇1(t)+p2(t)(−r(t))=p1(t)[k̇1(t)−r(t) G2(k1(t), r(t))],

so that (3.15) is equivalent to (3.12).
The question arises whether Hartwick’s rule, in the form (3.15), for
general capital accumulation models with heterogenous capital goods,
characterizes intertemporal equity along competitive paths. The answer is
that a weaker condition than (3.15) actually provides such a characteriza-
tion. This weaker condition, which can be called the Dixit–Hammond–Hoel
rule, is that the value of investment along a competitive path, p(t) z(t), is
constant over time.
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We formally state and prove this result below.

Proposition 1. An interior competitive path (z(t), k(t), p(t), q(t)) from
K in Rn++ is equitable iff

I(t) — p(t) z(t) is constant over time. (3.16)

Proof. Since the competitive path is interior, we have from Lemma 1(ii)

ẏ(t)=q̇(t) u(z(t), k(t)) for t \ 0, a.e. (3.17)

Differentiating (2.8), we get

ẏ(t)=q(t) u̇(z(t), k(t))+q̇(t) u(z(t), k(t))+İ(t) for t \ 0, a.e.
(3.18)

Using (3.17) and (3.18) we obtain

İ(t)=−q(t) u̇(z(t), k(t)) for t \ 0, a.e. (3.19)

Clearly (3.19) yields the equivalence of u̇(z(t), k(t))=0 and İ(t)=0 (since
q(t) > 0). L

3.4. An Example

It should not be concluded from Proposition 1 above, that Hartwick’s
rule (3.15) does not characterize equitable competitive paths. It is logically
possible that if a competitive path satisfies the Dixit–Hammond–Hoel rule
(3.16), it necessarily satisfies Hartwick’s rule (3.15). That is, whenever the
value of net investment is constant over time along a competitive path,
the constant is zero. Indeed, for a class of exhaustible resource models of
the type described in Example 2 of Section 2, this is precisely what happens
(see Dasgupta and Mitra [11] for this intriguing result).
We now indicate, in an example, that Hartwick’s rule can be violated for
an interior competitive path which is equitable, so that Hartwick’s rule is,
in general, different from the Dixit–Hammond–Hoel rule, and therefore it
does not characterize equitable competitive paths.
Our discussion will be based on Example 1 of Section 2, the familiar
one-sector neoclassical model of growth. The function [G(k)−d(k)] is
maximized at a unique point, kg, among all k ¥ [0,.), and 0 < kg <.. By
the assumptions on G and d, [G(kg)−dkg] > 0 and is denoted by Cg. Then
(kg, Cg) denotes the golden-rule capital and consumption levels, respec-
tively. There is a unique point, k̄, in (0,.) where G(k̄)=dk̄. One can check
that kg < k̄ <.; k̄ is the maximum sustainable stock.
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Let the initial capital stock, K, be in (kg, k̄). Consider the differential
equation

k̇(t)=G(k(t))−dk(t)−Cg, k(0)=K ¥ (kg, k̄). (3.20)

It can be checked that there is a unique solution (k(t)) to this differential
equation, and (k(t)) has the following properties:

(i) kg < k(t) < K for t \ 0;

(ii) −dk(t) < k̇(t) < 0 for t \ 0
(3.21)

Defining z(t)=k̇(t) for t \ 0, we see that (z(t), k(t)) is an interior path
from K, and u(z(t), k(t))=w(Cg) for t \ 0. Thus, (z(t), k(t)) is an equit-
able path.
Let us define a function p(t) by

p(t)=exp 5F t
0
(d−G −(k(s))) ds6 . (3.22)

Then p(0)=1 and p(t) is increasing with t. Denoting [p(t)/w −(Cg)] by
q(t), it is straightforward to check that (z(t), k(t), p(t), q(t)) is an interior
competitive path from K.
Since k̇(t) < 0, it is clear that

p(t) k̇(t) < 0 for t \ 0, (3.23)

so Hartwick’s rule is violated on this competitive equitable path.
The competitive equitable path which we have constructed is clearly
inefficient To see this, define T by

(kg/K)=1/edT. (3.24)

Then define the function k −(t) for 0 [ t [ T by

k −(t)=K/edt (3.25)

and k −(t)=kg for t > T. Then denoting k̇ −(t) by z −(t) for all t ] T,
(z −(t), k −(t)) is a path from K, which satisfies

G(k −(t))−dk −(t)− k̇ −(t) > Cg for 0 [ t < T

and G(k −(t))−dk −(t)− k̇ −(t)=Cg for t > T. Thus, (z(t), k(t)) could not be
efficient.

370 TAPAN MITRA



4. A CHARACTERIZATION OF EFFICIENT EQUITABLE PATHS

Since Hartwick’s rule does not characterize competitive equitable paths,
we are led to evaluate the precise significance of Hartwick’s rule. The
example of Section 3.4 seems to point in the following direction: if along a
competitive equitable path, Hartwick’s rule is not satisfied, then the path is
intertemporally inefficient. If this were true in general, then Hartwick’s rule
would take on a significance that is quite distinct from the intertemporal
equity issue. In fact, its role then would be to help signal inefficiency of
competitive equitable paths. Along any competitive equitable path, the
value of net investment would be constant; but, if the constant were non-
zero, the path would be pronounced inefficient.
A word of caution: we are not saying that Hartwick’s rule will identify
efficient paths. It is possible for a competitive equitable path to satisfy HR
and still be inefficient. One only needs to consider a stationary path in the
neoclassical one-sector model, with the stationary capital stock exceeding
the golden-rule capital stock.
We proceed, in this section, to show that the lesson of the example of
Section 3.4 can be fully generalized. But such a demonstration clearly
requires a convenient necessary condition of efficient paths, which would
yield Hartwick’s rule when the path was also equitable. Absent any such
general necessary condition in continuous time models, we have to develop
one. This is accomplished in Theorem 1. The result on intertemporal effi-
ciency is then used in Theorem 2 to derive Hartwick’s rule as a necessary
condition for efficient equitable paths.

4.1. Efficiency and Terminal Cost Minimization
The basic necessary condition for competitive efficiency that we establish
is ‘‘terminal cost minimization,’’ a concept due to Malinvaud [18]. In fact,
in his general discrete-time model, Malinvaud characterized competitive
efficiency in terms of this condition.
The concept of terminal cost minimization may be explained as follows.
Consider a competitive efficient path (z(t), k(t), p(t), q(t)), and consider
any instant of time, T > 0. Then for any path (z −(t), k −(t)) which maintains
the same utility stream as (z(t), k(t)) from T onwards (that is, u(z −(t),
k −(t))=u(z(t), k(t)) for t \ T a.e.), we must have the ‘‘terminal cost’’ of the
capital stocks at T on the path (z −(t), k −(t)) at least as high as on the path
(z(t), k(t)) (that is, p(T) k −(T) \ p(T) k(T)). And this property is true for
an arbitrary T > 0.

Theorem 1. Let (z(t), k(t), p(t), q(t)) be an interior competitive path
from K̄,which is efficient. Then for a.e. T > 0,

p(T) k(T) [ p(T) k (4.1)
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for all k ¥ A — {K: there is a path (ẑ(t), k̂(t)) from K satisfying u(ẑ(t), k̂(t))
\ u(z(t+T), k(t+T)) for a.e. t \ 0}.

Proof. Pick any T > 0. Suppose, contrary to (4.1), there is k̄ ¥ A, such
that

p(T) k(T) > p(T) k̄. (4.2)

We will show that this supposition leads to a contradiction. To this end,
denote [k(T)− k̄] by h; then p(T) h > 0.

Step 1. Denote ||u1(z(T), k(T))|| by B −; let M − be the maximum value
of −[V −F(z(T), k(T)) V] among all V=(a, b) ¥ Rn×Rn satisfying ||V|| [ 1,
where F(z(T), k(T)) is the Hessian of u, evaluated at (z(T), k(T)). Let
(B, M) >> (B −, M −).
Pick h > 0, such that for all (k, z) satisfying ||z−z(T), k−k(T)|| [ h, we
have (z, k) ¥ int L, and

(i) −[V −F(z, k) V] [ 2M for all V=(a, b) ¥ Rn×Rn satisfying
||V|| [ 1;
(ii) ||u1(z, k)|| [ 2B.

By definition of (B, M), this can be done.

Step 2. Using the continuity of (z(t), k(t), p(t), q(t)) at t=T, we can
find 0 < S < T, such that for all t ¥ [S, T],

(i) ||z(t)−z(T), k(t)−k(T)|| [ (h/4)
(ii) ||u2(z(t), k(t))|| ||h||(T−S) < (1/4)[p(T) h/q(T)]
(iii) [p(t) h/q(t)] \ (3/4)[p(T) h/q(T)].

Step 3. Choose 0 < l < 1, with l sufficiently close to zero, so that

(i) [l1/4 ||h||/(T−S)][1+(T−S)] [ (h/4);

(ii) 2h2l1/2M< p(T) hq(T)/(T−S).
(4.3)

Define the function (z −(t), k −(t)) from K̄ by

z −(t)=z(t) for 0 [ t < S

z −(t)=z(t)−[lh/(T−S)] for t ¥ [S, T]

z −(t)=(1−l) z(t)+lẑ(t−T) for t > T
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and:

k −(t)=K̄+F
t

0
z −(s) ds for t \ 0

We can check that (z −(t), k −(t)) is a path from K̄. First, note that
k −(t)=k(t) for 0 [ t [ S. For t ¥ [S, T], we have

k −(t)=K̄+F
t

0
z −(s) ds=−l F

t

S
[lh/(T−S)] ds+K̄+F

t

0
z(s) ds

=−[lh(t−S)/(T−S)]+k(t).

Thus, for t ¥ [S, T], we have ||z −(t)−z(t), k −(t)−k(t)||=[l ||h||/(T−S)]×
[1+(t−S)] [ l3/4(h/4) [ (h/4) by (4.3), so that by using Step 2(i), we
have ||z −(t)−z(T), k −(t)−k(T)|| [ h for t ¥ [S, T]. Consequently, (z −(t),
k −(t)) ¥ int L by Step 1. Further k −(T)=k(T)−lh=k(T)−l[k(T)− k̄]
=(1−l) k(T)+lk̄. Since k̂(0)=k̄, we have, for t > T, (z −(t), k −(t))=
(1−l)(z(t), k(t))+l(ẑ(t−T), k̂(t−T)), and consequently (z −(t), k −(t)) ¥ L
by convexity of L.

Step 4. Clearly, for 0 [ t < S, we have u(z −(t), k −(t))=u(z(t), k(t)).
And, for t > T, we have u(z −(t), k −(t)) \ (1−l) u(z(t), k(t))+lu(ẑ(t−T),
k̂(t−T)) \ u(z(t), k(t)), by definition of A.
We will now show that for t ¥ [S, T], we have

u(z −(t), k −(t)) > u(z(t), k(t)). (4.4)

For t ¥ [S, T], we calculate

u −(z −(t), k −(t))−u(z(t), k(t))

=u1(z(t), k(t))(z −(t)−z(t))+u2(z(t), k(t))(k −(t)−k(t))

+(1/2) V −(t) F(z̃(t), k̃(t)) V(t), (4.5)

where V(t)=(z −(t)−z(t), k −(t)−k(t)) and (z̃(t), k̃(t)) is a convex combi-
nation of (z(t), k(t)) and (z −(t), k −(t)) as given by Taylor’s expansion.
Note that since ||z −(t)−z(T), k −(t)−k(T)|| [ h (by Step 3) and ||z(t)−z(T),
k(t)−k(T)|| [ h (by Step 2), we have ||z̃(t)−z(T), k̃(t)−k(T)|| [ h. Thus
(z̃(t), k̃(t)) ¥ int L, and −[V −F(z̃(t), k̃(t)) V] [ 2M for all V=(a, b) in
Rn×Rn satisfying ||V|| [ 1.
Now ||V(t)|| [ l ||h||[1+(T−S)]/(T−S) [ l3/4(h/4) for t ¥ [S, T], so
that ||V(t)/hl3/4|| [ (1/4) < 1, and

−[V −(t) F(z̃(t), k̃(t)) V(t)] [ (h2l3/2) 2M. (4.6)
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Also, ||k −(t)−k(t)|| [ l ||h|| by Step 3, so

|u2(z(t), k(t))(k −(t)−k(t))| [ ||u2(z(t), k(t)|| ||k −(t)−k(t)||

< (l/4)[p(T) h/q(T)]/(T−S)

by Step 2(ii). Finally,

u1(z(t), k(t))(z −(t)−z(t))=−[p(t)(z −(t)−z(t))/q(t)]

=[p(t)/q(t)][lh/(T−S)]

\ (3l/4)[p(T) h/q(T)]/(T−S)

by Step 2(iii). Thus, we have

u1(z(t), k(t))(z −(t)−z(t))+u2(z(t), k(t))(k −(t)−k(t))

\ (l/2)[p(T) h/q(T)]/(T−S). (4.7)

Using (4.6) and (4.7) in (4.5), we obtain

u(z −(t), k −(t))−u(z(t), k(t)) \ (l/2){[p(T) h/q(T)]/(T−S)}−h2l3/2M

=(l/2){[p(T) h/q(T)(T−S)]−h2l1/22M}

> 0

by (4.3)(ii). This proves (4.4), and establishes that (z(t), k(t)) is inefficient,
a contradiction. Thus (4.1) must hold. L

4.2. Efficient Equitable Paths Satisfy Hartwick’s Rule

We are now in a position to establish the principal result of this paper:
efficient equitable paths must satisfy Hartwick’s investment rule. The
reason that the terminal cost minimization property of competitive efficient
paths is just the right concept is establishing this result is the following.
Given a competitive efficient path (z(t), k(t), p(t), q(t)) which also happens
to be equitable, it can be compared with paths which are the same as the
path (z(t), k(t), p(t), q(t)), except that they are shifted forward in time or
backward in time (by any small fixed time interval). Terminal cost mini-
mization will then imply that for each T > 0, p(T) k(S) is minimized at T
among all S in a neighborhood of T. Then Hartwick’s rule,

p(T) k̇(T)=0,

is simply the necessary first-order condition of such a minimum.11

11Note that our earlier ‘‘word of caution’’ translates to the following observation. Since the
terminal cost-minimization condition characterizes competitive efficiency, and Hartwick’s rule
is only the first-order necessary condition of this minimization, it cannot identify competitive
efficiency.
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Theorem 2. Let (z(t), k(t), p(t), q(t)) be an interior competitive path,
which is efficient and equitable. Then

p(t) z(t)=0 for t \ 0, a.e. (4.8)

Proof. Pick any T > 0 at which k is differentiable (as a function of t)
and at which z is continuous (as a function of t). The complement of this
set of T in [0,.) has Lebesgue measure zero.
Pick S > T, and note that kS is in A, where A is defined in Theorem 1,
since the given path is equitable. Thus, using Theorem 1, we have

p(T)(k(T)−k(S)) [ 0.

This implies that, since S > T,

p(T)[k(S)−k(T)]/(S−T) \ 0. (4.9)

Letting SQ T, and noting that k is differentiable at T, we have

p(T) z(T)=p(T) k̇(T) \ 0. (4.10)

Pick 0 < s < T and note that ks is in A, where A is defined in Theorem 1,
since the given path is equitable. Thus, using Theorem 1, we have

p(T)(k(T)−k(s)) [ 0.

This implies that since s < T,

p(T)[k(T)−k(s)]/(T−s) [ 0. (4.11)

Letting sQ T, and noting that k is differentiable at T, we have

p(T) z(T)=p(T) k̇(T) [ 0. (4.12)

Combining (4.10) and (4.12), we get (4.8). L
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